miércoles, 8 de febrero de 2012




                                                      Teorema de De Moivre

Fórmula para calcular las potencias zn de un número complejo z.
El teorema de De Moivre establece que si un número complejo z = r(cos x + i sin x), entonces zn = rn(cos nx + i sin nx), en donde n puede ser enteros positivos, enteros negativos, y exponentes fraccionarios.

Potencias de números complejos
Las potencias enteras de un número complejo no nulo z = re vienen dadas por
z = rneinθ (n = 0, +1, -1, +2, -2 ...)
Como zn+1 = zzn cuando n=1,2,..., esto se comprueba fácilmente para valores positivos de n por inducción, para el producto de números complejos en forma exponencial. La ecuación es válida también para n = 0 con el convenio de que z0 = 1. Si n = -1, -2..., por otro lado, definimos zn en términos del inverso multiplicativo de z escribiendo zn = (z-1)m, donde m = -n = 1, 2, ... Entonces, como la ecuación z = rneinθ es válida para potencias enteras positivas, se sigue de la forma exponencial de z-1 que
zn = [1/r ei(-θ)]m = (1/r)m eim(-θ) = rneinθ
Por tanto, la ecuación z = rneinθ es válida para toda potencia entera.
Nótese que si r = 1, z = rneinθ se convierte en
(e)n = eiθn           (n = 0, ±1, ±2 ...)
Cuando se expresa en la forma
(cos θ + i sen θ)n = cos nθ + i sen nθ
que se le conoce como la fórmula de De Moivre
referencias:

<a href="http://matematicasuniversitaria.blogspot.com/" target="_blank"><img src="http://img17.imageshack.us/img17/2310/bannermatematicasuniver.gif"/></a>





                                            

No hay comentarios:

Publicar un comentario